Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35957036

RESUMO

The potential of nanomaterials in food technology is nowadays well-established. However, their commercial use requires a careful risk assessment, in particular concerning the fate of nanomaterials in the human body. Bacterial nanocellulose (BNC), a nanofibrillar polysaccharide, has been used as a food product for many years in Asia. However, given its nano-character, several toxicological studies must be performed, according to the European Food Safety Agency's guidance. Those should especially answer the question of whether nanoparticulate cellulose is absorbed in the gastrointestinal tract. This raises the need to develop a screening technique capable of detecting isolated nanosized particles in biological tissues. Herein, the potential of a cellulose-binding module fused to a green fluorescent protein (GFP-CBM) to detect single bacterial cellulose nanocrystals (BCNC) obtained by acid hydrolysis was assessed. Adsorption studies were performed to characterize the interaction of GFP-CBM with BNC and BCNC. Correlative electron light microscopy was used to demonstrate that isolated BCNC may be detected by fluorescence microscopy. The uptake of BCNC by macrophages was also assessed. Finally, an exploratory 21-day repeated-dose study was performed, wherein Wistar rats were fed daily with BNC. The presence of BNC or BCNC throughout the GIT was observed only in the intestinal lumen, suggesting that cellulose particles were not absorbed. While a more comprehensive toxicological study is necessary, these results strengthen the idea that BNC can be considered a safe food additive.

3.
Biomacromolecules ; 23(3): 1169-1182, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025509

RESUMO

Amphotericin B (AmB) is a highly hydrophobic drug with significant leishmanicidal activity whose use is limited by its poor water solubility and adverse effects. Polymer-drug conjugates are proposed as a delivery system designed to overcome those limitations while improving drug bioavailability, safety, and activity. Here, AmB was covalently linked to periodate-oxidized hyaluronic acid (HA) (oxidation degree of 30.1 ± 5.6%) via a Schiff base (HA-AmB imine). The conjugate presents high water solubility and self-assembles into particles with a mean size of 88.2 ± 17.6 nm, a negative charge (-28.3 ± 0.9 mV), and a drug content of 17.8 ± 1.4%. Spectroscopic studies revealed the presence of AmB in aggregate and super-aggregated forms in the conjugate, which could explain the significant reduction of the in vitro cytotoxicity and hemolytic activity. The formulation showed not only in vitro anti-leishmanial activity against L. infantum-infected macrophages (IC50 = 0.023 µM) but also against an in vivo infected mouse model, promoting a 1.32- and a 4.98-log10 suppression of the L. infantum burden in the spleens and liver, respectively, without toxic effects. In summary, this study describes the safe and effective use of water-soluble HA-AmB imine conjugates for leishmaniasis treatment.


Assuntos
Anfotericina B , Ácido Hialurônico , Anfotericina B/química , Anfotericina B/farmacologia , Animais , Antifúngicos/química , Iminas , Camundongos , Água
4.
Acta Biomater ; 137: 186-198, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634508

RESUMO

MSI-78A (Pexiganan A) is one of the few antimicrobial peptides (AMPs) able to kill Helicobacter pylori, a pathogenic bacterium that colonizes the gastric mucosa of half of the world's population. Antibiotics fail in 20-40% of H. pylori-infected patients, reinforcing the need for alternative treatments. Herein, a bioengineered approach was developed. MSI-78A with a C-terminal cysteine was grafted onto chitosan microspheres (AMP-ChMic) by thiol-maleimide (Michael-addition) chemistry using a long heterobifunctional spacer (NHS-PEG113-MAL). Microspheres with ∼4 µm diameter (near H. pylori length) and stable at low pH were produced by spray drying using a chitosan solution with an incomplete genipin crosslinking. A 3 × 10-5 µg AMP/microsphere grafting was estimated/confirmed by UV/Vis and FTIR spectroscopies. AMP-ChMic were bactericidal against H. pylori J99 (highly pathogenic human strain) at lower concentrations than the free peptide (∼277 µg grafted MSI-78A-SH/mL vs 512 µg free MSI-78A-SH/mL), even after pre-incubation in simulated gastric conditions with pepsin. AMP-ChMic killed H. pylori by membrane destabilization and cytoplasm release in a ratio of ∼10 bacteria/microsphere. This can be attributed to H. pylori attraction to chitosan, facilitating the interaction of grafted AMP with bacterium membrane. Overall, it was demonstrated that the peptide-microsphere conjugation chemistry did not compromise the MSI-78A antimicrobial activity, instead it boosted its bactericidal performance against H. pylori. STATEMENT OF SIGNIFICANCE: Half of the world's population is infected with Helicobacter pylori, a gastric bacterium that is responsible for 90% of non-cardia gastric cancers. Therefore, H. pylori eradication is now advocated in all infected individuals. However, available antibiotic therapies fail in up to 40% patients. Antimicrobial peptides (AMPs) are appealing alternatives to antibiotics, but their high susceptibility in vivo limits their clinical translation. AMP immobilization onto biomaterials surface will overcome this problem. Herein, we demonstrate that immobilization of MSI-78A (one of the few AMPs with activity against H. pylori) onto chitosan microspheres (AMP-ChMic) enhances its anti-H. pylori activity even at acidic pH (gastric settings). These results highlight the strong potential of AMP-ChMic as an antibiotic alternative for H. pylori eradication.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos/farmacologia , Quitosana , Helicobacter pylori , Antibacterianos/farmacologia , Quitosana/farmacologia , Infecções por Helicobacter , Helicobacter pylori/efeitos dos fármacos , Humanos , Microesferas
5.
Sci Rep ; 11(1): 23944, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907234

RESUMO

Nanocomplexes systems made up natural poylymers have pharmacotechnical advantages such as increase of water solubility and a decrease of drugs toxicity. Amphotericin B (AmB) is a drug apply as anti-leishmanial and anti-fungal, however it has low water solubility and high toxicity, limiting its therapeutic application. With this in mind, the present study aimed to produce nanocomplexes composed by alginate (Alg), a natural polymer, with AmB covered by nanocrystals from bacterial cellulose (CNC). For this reason, the nanocomplexes were produced utilizing sodium alginate, amphotericin B in a borate buffer (pH 11.0). The CNC was obtained by enzymatic hydrolysis of the bacterial cellulose. To CNC cover the nanocomplexes 1 ml of the nanocomplexes was added into 1 ml of 0.01% CNC suspension. The results showed an ionic adsorption of the CNC into the Alg-AmB nanocomplexes surface. This phenomena was confirmed by an increase in the particle size and PDI decrease. Besides, nanocomplexes samples covered by CNC showed uniformity. The amorphous inclusion of AmB complex into the polysaccharide chain network in both formulations. AmB in the nanocomplexes was in supper-aggregated form and showed good biocompatibility, being significantly less cytotoxic in vitro against kidney cells and significantly less hemolytic compared to the free-drug. The in vitro toxicity results indicated the Alg-AmB nanocomplexes can be considered a non-toxic alternative to improve the AmB therapeutic effect. All process to obtain nanocomplexes and it coat was conduce without organic solvents, can be considered a green process, and allowed to obtain water soluble particles. Furthermore, CNC covering the nanocomplexes brought additional protection to the system can contribut advancement in the pharmaceutical.


Assuntos
Anfotericina B , Celulose , Nanopartículas , Alginatos/efeitos adversos , Alginatos/química , Alginatos/farmacologia , Anfotericina B/efeitos adversos , Anfotericina B/química , Anfotericina B/farmacologia , Animais , Celulose/efeitos adversos , Celulose/química , Celulose/farmacologia , Cães , Células HEK293 , Hemólise/efeitos dos fármacos , Humanos , Nanopartículas/efeitos adversos , Nanopartículas/química , Nanopartículas/uso terapêutico
6.
Adv Exp Med Biol ; 1329: 123-152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664237

RESUMO

Cancer is a complex and dynamic disease with an outcome that depends on a strict crosstalk between tumor cells and other components in tumor microenvironment, namely, tumor-infiltrating immune cells, fibroblasts, cancer stem cells, adipocytes, and endothelial cells. Within the tumor microenvironment, macrophages and T-lymphocytes appear to be key effectors during the several steps of tumor initiation and progression. Tumor cells, through the release of a plethora of signaling molecules, can induce immune tolerance, by avoiding immune surveillance, and inhibit immune cells cytotoxic functions. Furthermore, as the tumor grows, tumor microenvironment reveals a series of dysfunctional conditions that potentiate a polarization of harmful humoral Th2 and Th17, an upregulation of Treg cells, and a differentiation of macrophages into the M2 subtype, which contribute to the activation of several signaling pathways involving important tissue biomarkers (COX-2, EGFR, VEGF) implicated in cancer aggressiveness and poor clinical outcomes. In order to maintain the tumor growth, cancer cells acquire several adaptations such as neovascularization and metabolic reprogramming. An extensive intracellular production of lactate and protons is observed in tumor cells as a result of their high glycolytic metabolism. This contributes not only for the microenvironment pH alteration but also to shape the immune response that ultimately impairs immune cells capabilities and effector functions.In this chapter, the complexity of tumor microenvironment, with special focus on macrophages, T-lymphocytes, and the impact of lactate efflux, was reviewed, always trying to demonstrate the strong similarities between data from studies of humans and dogs, a widely proposed model for comparative oncology studies.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Cães , Células Endoteliais , Glicólise , Macrófagos
7.
Acta Biomater ; 114: 206-220, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622054

RESUMO

Persistent Helicobacter pylori (H. pylori) infection is related to 90% of gastric cancers. With bacterial resistance rising and treatment inefficiency affecting 15% of the patients, alternative treatments urge. Chitosan microspheres (ChMics) have been proposed as an H. pylori-binding system. This work evaluates ChMics biocompatibility, mucopenetration and capacity to treat H. pylori infection in mice after oral administration. ChMics of different size (XL, ∼120 µm and XS, ∼40 µm) and degree of acetylation (6% and 16%) were developed and revealed to be able to adhere both human and mouse-adapted H. pylori strains without cytotoxicity towards human gastric cells. Ex vivo studies showed that smaller (XS) microspheres penetrate further within the gastric foveolae, suggesting their ability to reach deeply adherent bacteria. In vivo assays showed 88% reduction of infection when H. pylori-infected mice (C57BL/6) were treated with more mucoadhesive XL6 and XS6 ChMics. Overall, ChMics clearly demonstrate ability to reduce H. pylori gastric infection in mice, with chitosan degree of acetylation being a dominant factor over microspheres' size on H. pylori removal efficiency. These results evidence the strong potential of this strategy as an antibiotic-free approach to fight H. pylori infection, where microspheres are orally administered, bind H. pylori in the stomach, and remove them through the gastrointestinal tract. STATEMENT OF SIGNIFICANCE: Approximately 90% of gastric cancers are caused by the carcinogenic agent Helicobacter pylori, which infects >50% of the world population. Bacterial resistance, reduced antibiotic bioavailability, and the intricate distribution of bacteria in mucus and within gastric foveolae hamper the success of most strategies to fight H. pylori. We demonstrate that an antibiotic-free therapy based on bare chitosan microspheres that bind and remove H. pylori from stomach can achieve 88% reduction of infection from H. pylori-infected mice. Changing size and mucoadhesive properties, microspheres can reach different areas of gastric mucosa: smaller and less mucoadhesive can penetrate deeper into the foveolae. This promising, simple and inexpensive strategy paves the way for a faster bench-to-bedside transition, therefore holding great potential for clinical application.


Assuntos
Quitosana , Infecções por Helicobacter , Helicobacter pylori , Animais , Quitosana/farmacologia , Mucosa Gástrica , Infecções por Helicobacter/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microesferas
8.
Toxicol Res ; 35(1): 45-63, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30766657

RESUMO

In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become airborne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high relevance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils (nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived macrophages (BMMΦ) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and 10 µg of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6 months after treatments. Microcrystaline Avicel-plus® CM 2159, a plant-derived cellulose, was used for comparison. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid over time, even following cumulative treatments. Avicel-plus® CM 2159 significantly increased LDH release, detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treatment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC, possibly due to foreign body reaction and the organism's inability to remove the fibers. Overall, despite being a safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose significant health risks.

9.
Biomed Res Int ; 2016: 4917387, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28053982

RESUMO

Infiltrating cells of the immune system are widely accepted to be generic constituents of tumor microenvironment. It has been well established that the development of mammary cancer, both in humans and in dogs, is associated with alterations in numbers and functions of immune cells at the sites of tumor progression. These tumor infiltrating immune cells seem to exhibit exclusive phenotypic and functional characteristics and mammary cancer cells can take advantage of signaling molecules released by them. Cancer related inflammation has an important role in mammary carcinogenesis, contributing to the acquisition of core hallmark capabilities that allow cancer cells to survive, proliferate, and disseminate. Indeed, recent studies in human breast cancer and in canine mammary tumors have identified a growing list of signaling molecules released by inflammatory cells that serve as effectors of their tumor-promoting actions. These include the COX-2, the tumor EGF, the angiogenic VEGF, other proangiogenic factors, and a large variety of chemokines and cytokines that amplify the inflammatory state. This review describes the intertwined signaling pathways shared by T-lymphocytic/macrophage infiltrates and important tissue biomarkers in both human and dog mammary carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Inflamação/genética , Neoplasias Mamárias Animais/genética , Animais , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Proliferação de Células/genética , Cães , Feminino , Humanos , Inflamação/complicações , Inflamação/patologia , Neoplasias Mamárias Animais/complicações , Neoplasias Mamárias Animais/patologia , Invasividade Neoplásica/genética , Microambiente Tumoral/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-26106433

RESUMO

The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins.

11.
Res Vet Sci ; 95(3): 1094-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24091029

RESUMO

The epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase receptor which has been shown to have an important role in human breast cancer. Its role appears to be associated with increased angiogenesis and metastasis. In order to clarify its role in canine mammary tumours (CMT), 61 malignant neoplasms were studied by using immunohistochemistry, comparing expression of EGFR, microvessel density (MVD) by CD31 immunolabelling and characteristics of tumour aggressiveness. High EGFR immunoexpression was statistically significantly associated with tumour size, tumour necrosis, mitotic grade, histological grade of malignancy and clinical stage. High CD31 immunoreactivity was statistically significantly associated with tubule formation, histological grade of malignancy and clinical stage. A positive correlation between EGFR and CD31 immunoexpression (r = 0.843; P < 0.001) was also observed. Results suggest that an over-expression of EGFR may contribute to increased angiogenesis and aggression in malignant CMT, presenting the possibility of using EGFR inhibitors in the context of metastatic disease treatment.


Assuntos
Doenças do Cão/patologia , Receptores ErbB/biossíntese , Neoplasias Mamárias Animais/irrigação sanguínea , Animais , Cães , Receptores ErbB/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Microvasos/patologia , Metástase Neoplásica , Neovascularização Patológica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...